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Abstract—Breast cancer is the second-most common and lead-
ing cause of cancer death among women. It has become a major
health issue in the world over the past 50 years, and its incidence
has increased in recent years. Early detection is an effective way to
diagnose and manage breast cancer. Computer-aided detection or
diagnosis (CAD) systems can play a key role in the early detection
of breast cancer and can reduce the death rate among women with
breast cancer. The purpose of this paper is to provide an overview
of recent advances in the development of CAD systems and re-
lated techniques. We begin with a brief introduction to some basic
concepts related to breast cancer detection and diagnosis. We then
focus on key CAD techniques developed recently for breast cancer,
including detection of calcifications, detection of masses, detection
of architectural distortion, detection of bilateral asymmetry, image
enhancement, and image retrieval.

Index Terms—Breast cancer, computer-aided detection or diag-
nosis (CAD), key CAD techniques, mammography.

I. INTRODUCTION

FOR YEARS, cancer has been one of the biggest threats to
human life; it is expected to become the leading cause of

death over the next few decades [1]. Based on statistics from
the World Health Organization (WHO) [1], cancer accounted
for 13% of all deaths in the world in 2004; deaths caused by
cancer are expected to increase in the future, with an estimated
12 million people dying from cancer in 2030 [1].

Of all the known cancers, breast cancer is a major concern
among women. It is the second-most common and leading cause
of cancer deaths among women [2]. According to published
statistics, breast cancer has become a major health problem
in both developed and developing countries over the past 50
years, and its incidence has increased in recent years. In the
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United States, in 2007, there were an estimated 178,480 new
cases of breast cancer diagnosed and 40,460 deaths from this
disease among women [3]. At present, there are no effective
ways to prevent breast cancer, because its cause remains un-
known. However, efficient diagnosis of breast cancer in its
early stages can give a woman a better chance of full recov-
ery. Therefore, early detection of breast cancer can play an im-
portant role in reducing the associated morbidity and mortality
rates.

Computer-aided detection or diagnosis (CAD) systems,
which use computer technologies to detect abnormalities in
mammograms such as calcifications, masses, and architectural
distortion, and the use of these results by radiologists for diag-
nosis [4], can play a key role in the early detection of breast
cancer and help to reduce the death rate among women with
breast cancer. Thus, in the past several years, CAD systems
and related techniques have attracted the attention of both re-
search scientists and radiologists. For research scientists, there
are several interesting research topics in cancer detection and
diagnosis systems, such as high-efficiency, high-accuracy le-
sion detection algorithms, including the detection of masses,
detection of architectural distortion, and the detection of bi-
lateral asymmetry. Radiologists, on the other hand, are at-
tracted by the effectiveness of clinical applications of CAD
systems.

The aim of this paper is to provide an overview of
CAD systems and related techniques developed in recent
years. It is also intended to draw the attention of more re-
search scientists to the research field of CAD for breast
cancer, and advance research on the detection and di-
agnosis of breast cancer and related techniques, such as
image processing, computer technology, and radiological
imaging.

The rest of this paper is organized as follows. In Section II, we
introduce some basic concepts in breast cancer diagnosis using
mammography, including the principles of breast imaging and
two types of mammography. We also discuss the relationship
between double reading and CAD. In Section III, we review
some existing types of CAD systems. In Section IV, we re-
view in details some key techniques used in CAD systems for
breast cancer, including many recently developed algorithms
for detection of calcifications, masses, architectural distortion,
and bilateral asymmetry. We also review several other associ-
ated techniques such as image enhancement and image retrieval
for CAD. In Section V, we discuss some issues concerning the
future of CAD systems for breast cancer. In Section VI, we
conclude the paper.
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II. DETECTION AND DIAGNOSIS OF BREAST CANCER USING

MAMMOGRAPHY

There are several imaging techniques for examination of the
breast, including magnetic resonance imaging, ultrasound imag-
ing, and X-ray imaging. Mammography is a specific type of
imaging that uses a low-dose X-ray system to examine the
breast, and is currently the most effective method for detec-
tion of breast cancer before it becomes clinically palpable [5].
Mammography offers high-quality images at a low radiation
dose, and is currently the only widely accepted imaging method
used for routine breast cancer screening. Current guidelines of
the American Cancer Society (ACS) recommend that women
aged 40–49 years have a routine mammogram every one to two
years, with the first beginning at age 40 [6].

Currently, there are two types of mammography [7]–[9]: one
is film mammography and the other is digital mammography.
In film mammography, the image is created directly on film,
whereas digital mammography takes an electronic image of
the breast and stores it directly on a computer [7]. Although
both types of mammography have their advantages and dis-
advantages, digital mammography has some potential advan-
tages over film mammography. Compared to digital mammog-
raphy, screen-film mammography has some limitations, which
include [10]: 1) limited range of X-ray exposure; 2) image con-
trast cannot be altered after the image is obtained; 3) the film
acts as the detector, display, and archival medium; and 4) film
processing is slow and introduces artifacts. All of these lim-
itations have pushed researchers further to develop advanced
techniques for digital mammography. Digital mammography is
overcoming and will continue to overcome the limitations of
film mammography described before, and will have the follow-
ing potential advantages [10]: 1) wider dynamic range and lower
noise; 2) improved image contrast; 3) enhanced image quality;
and 4) lower X-ray dose.

Although digital mammography has many potential advan-
tages over traditional film mammography, clinical trials show
that [11] the overall diagnostic accuracy levels of current digital
and film mammography are similar when used in breast cancer
screening. However, digital mammography may be more effec-
tive than screen-film mammography for certain women [12],
[13]. For example, Spurgeon [12] showed that digital mammog-
raphy depicts more tumors than screen-film mammography, es-
pecially lesions seen as microcalcifications (MCs). Pisano et
al. [11] showed that digital mammography is more accurate in
women under the age of 50, women with radiographically dense
breasts, and premenopausal women.

There are two types of examinations performed using mam-
mography: screening mammography and diagnostic mammog-
raphy. Screening mammography is performed to detect breast
cancer in an asymptomatic population [14]. Screening mam-
mography generally consists of four views, with two views of
each breast: the craniocaudal (CC) view and the mediolateral
oblique (MLO) view. The aim of diagnostic mammography
is to examine a patient who has already demonstrated abnor-
mal clinical findings, such as a breast lump [14]. Similar to
screening mammography, each breast examined using diagnos-

tic mammography may also have two views. Additional diag-
nostic mammography may offer an in-depth look at suspicious
areas. Diagnostic mammography is often performed as a follow-
up examination of an abnormal screening mammography in
order to determine whether the area of concern on the screen-
ing examination needs additional breast imaging or a biopsy
to determine whether the woman has breast cancer [14]. The
adoption of mammographic examinations, especially screening
mammography, has been proven to increase the rate of detection
of cancer and reduce the rates of morbidity and mortality [5].

One of the difficulties with mammography [15] is that mam-
mograms generally have low contrast. This makes it difficult
for radiologists to interpret the results. Studies [16], [17] have
shown that mammography is susceptible to a high rate of false
positives as well as false negatives, causing a high proportion of
women without cancer to undergo further clinical evaluation or
breast biopsy, or miss the best time interval for the treatment of
cancer. Several solutions have been proposed to increase the ac-
curacy, specificity, and sensitivity of mammography and reduce
unnecessary biopsies.

Double reading of mammograms [18], [19] has been advo-
cated to reduce the proportion of missed cancers. The basic
idea of double reading is to have two radiologists read the same
mammograms. According to Warren and Duffy [19], double
reading can contribute significantly to high sensitivity and effec-
tive screening. However, the workload and cost associated with
double reading are high. Instead of double reading, CAD, which
is referred to as the “second pair of eyes of the radiologists,”
is aimed to be used to aid radiologists in their interpretation
of mammograms. With a CAD system, only one radiologist is
needed to read each mammogram rather than two. The adoption
of a CAD system could reduce the experts’ workload. It has
been proven that CAD systems can improve the detection rate
of cancer in its early stages. For example, research by Morton
et al. [20] indicates that the use of CAD improved the detection
of breast cancer with a 7.62% increase in the number of breast
cancers detected, with a small but acceptable increase of 0.93%
in the recall rate, and a minimal increase in the number of biop-
sies with benign or negative results. Brem et al. [21] reported
that use of a CAD system significantly improved the detection
of breast cancer by increasing the radiologist’s sensitivity by
21.2%.

III. COMPUTER-AIDED DETECTION AND DIAGNOSIS OF

BREAST CANCER

CAD, which integrates diagnostic imaging with computer sci-
ence, image processing, pattern recognition, and artificial intel-
ligence technologies [22], can be defined as a diagnosis [23] that
is made by a radiologist who uses the output from computerized
analysis of medical images as a “second opinion” in detecting le-
sions and making diagnostic decisions. In the past several years,
CAD systems have drawn much attention from both research
scientists and radiologists because of the associated challenging
research topics and potential clinical applications.

There are two types of CAD systems based on mammographic
technologies: one is based on the conventional screen-film
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mammographic technology and the other is based on digital
mammographic technology. In the first type of CAD systems,
the films are scanned, digitized, and saved on the computer for
further examination. The second type of systems use full-field
digital mammographic (FFDM) technology, which is expected
to provide a higher signal-to-noise ratio, a higher detection
quantum efficiency, a wider dynamic range, and a higher con-
trast sensitivity than digitized film mammograms [24]. Although
FFDM technology is expected to be superior to the conventional
film-based mammographic technology, the results obtained in
a recent study show, with reasonable certainty, that there is
no difference in the accuracy between FFDM and screen-film
mammography, in particular, for asymptomatic women [25].
Commercial CAD systems based on these two types of mam-
mographic technology have been reported to have similar per-
formance [24].

Research on CAD systems and related techniques has at-
tracted great attention. There are several papers published [4],
[22], [26] and at least three commercial CAD systems available
on the market in the United States, including the R2 system,
the iCAD system, and Kodak’s system. There is, however, still
a long way to go before CAD systems become widely used
in clinics and screening centers. The most important need is to
demonstrate clearly that the accuracy of interpretation of screen-
ing mammograms with CAD systems is better than the accuracy
without CAD. Research [27]–[29] has shown that CAD repre-
sents a useful tool for the detection of breast cancer; however,
other research [11] has shown that CAD may, instead, make
readings less accurate. Such comparisons may be unreliable,
however, given the uncertainty associated with the adjustment
for the differences in several variables [30]. Regardless, the
results from a few recent studies [11], [30] show that the per-
formance of the current commercial CAD systems still needs
to be improved so that they can meet the requirements of clin-
ics and screening centers. Thus, improving the performance of
CAD systems remains to be a key issue for future research and
development.

IV. KEY TECHNIQUES FOR CAD SYSTEMS

The techniques used in CAD systems have a major impact
on their performance. Although many techniques have been
proposed so far, the development of new algorithms for CAD
of breast cancer is still an active research field, particularly
in regard to the detection of subtle abnormalities in mammo-
grams [4]. In the following, we review many techniques for the
detection of calcifications, masses, architectural distortion, and
bilateral asymmetry, as well as for image enhancement and re-
trieval. We focus on the methods that have been reported recently
in the literature.

A. Image Processing Methods for Detection of MC Clusters

MCs are tiny deposits of calcium that appear as small bright
spots in mammograms. Clustered MCs can be an important
indicator of breast cancer. They appear in 30%–50% of cases
diagnosed by mammographic screenings [31]. In the past two
decades, there has been extensive research conducted on the

development of computerized methods for automatic detection
of MCs in mammograms. Several review paper have been writ-
ten on this subject [32]–[36]. As described by El Naqa and
Yang [36], MC detection methods could be broadly divided
into the following four categories: 1) basic image enhancement
methods; 2) stochastic modeling methods; 3) multiscale de-
composition methods; and 4) machine learning methods. The
previous categorization is based on the underlying image pro-
cessing techniques employed in the different methods. Some of
the techniques can easily be placed in more than one category.
For example, a neural network approach may use wavelet-based
features as input. Nevertheless, we find such categorization to
be pedagogically convenient for the presentation of the different
methods and adopt it in the following review.

1) Basic Image Enhancement Methods: Methods in this cat-
egory are motivated by the fact that MCs tend to be brighter than
their surroundings. The basic idea here is to employ image en-
hancement methods to improve the contrast of MCs, and then
apply a threshold to separate them from their surroundings.
An example of image enhancement methods is the filtering ap-
proach developed by Nishikawa et al. [37]. This method is based
on a difference image technique followed by morphological ero-
sion to reduce false positives. The difference image is produced
using two filters, one for enhancing the MCs and the other for
suppressing them. More recently, a noise equalization scheme
was proposed by McLoughlin et al. [38]. In this method, it is
assumed that the dominant source of noise in digital mammo-
grams is due to limited quanta of X-rays. The quantum noise is
modeled using a simple square-root law of gray levels. The local
contrast is improved by removing the noise dependency on the
gray level [38]. Qian et al. applied a region grouping approach
for MC detection based on cluster analysis [39]. A visual model,
in conjunction with anisotropic diffusion filtering, was proposed
by Linguraru et al. [40]. A common theme among these different
methods is to apply standard image processing techniques for
pre- or post-processing of the images for detection. An apparent
advantage of this is its simplicity, ease of implementation, and
efficiency, which is very desirable for real-time clinical appli-
cations. However, this also comes at the expense of reduced
effectiveness in many cases. For instance, the difference image
approach can be viewed as a bandpass filter, which can be sen-
sitive to noise. To alleviate this, morphological operators were
applied to reduce false positives in a postprocessing step.

2) Stochastic Modeling Methods: In stochastic modeling
methods, the basic idea is to utilize statistical differences
between MCs and their surroundings. For instance, Gurcan
et al. [41] used differences in higher order statistics [e.g.,
the third moment (skewness) and the fourth moment (kurto-
sis)], where it was conjectured that areas with no MCs would
have a Gaussian-like distribution and areas with MCs would
be non-Gaussian (nonzero skewness and kurtosis). However,
this approach can be prone to errors in background (non-
MC) regions that are spatially variant and inadequate to be
described by second-order Gaussian statistics. More recently,
Caputo et al. [42] investigated a Markov random field (MRF)
based approach for MC detection. The MRF model is based
on using “spin glass” energy functions (generalized Gaussian
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kernels) [42]. Casaseca-de-la-Higuera et al. compared different
approaches based on Gaussian mixture models [43]. The use
of MRF models for image segmentation is advantageous over
some other statistical methods due to its ability to characterize
the spatial intensity distribution of an image. However, estimat-
ing a proper prior distribution remains a challenging task in
these probabilistic approaches.

3) Multiscale Decomposition Methods: Methods in this cat-
egory aim to exploit the differences in frequency content be-
tween MC spots and their surrounding background. In particu-
lar, wavelet transforms have been widely investigated for MC
detection. For instance, Strickland and Hahn [44] used undeci-
mated biorthognal wavelet transforms in which MCs were rep-
resented by circular Gaussian shapes with varying widths along
the different scales. The undecimated wavelet transform has
the advantage of being translation invariant. Optimal subband
weighting using a Fisher discriminant function was applied prior
to reconstruction from subbands 2 and 3 for improved detection
and segmentation of clustered MCs. More recently, Lemaur et al.
studied wavelet regularities and demonstrated that wavelets with
higher regularity, such as Matzinger wavelets, yield improved
performance compared to the classical Daubechies wavelets for
MC detection [45]. Multiplexed wavelets were explored by Mini
et al., with mammograms treated as oscillatory signals [46].
Nakayama et al. combined filter bank decomposition with a
Bayes classifier to detect MCs [47]. Regentova et al. combined
wavelet transforms with hidden Markov trees in a maximum-
likelihood framework for MC detection [48]. Although we have
made a separate category for these decomposition methods be-
cause of their importance and prevalence in the literature, these
methods are often used as feature extraction techniques that
are used in conjunction with other approaches (e.g., as input to
classifiers).

4) Machine Learning Methods: Machine learning methods
aim to decipher dependencies from data. In the context of MC
detection, the problem is typically treated as a binary classi-
fication process, where the goal is to determine whether an
MC is present or not at a pixel location. As an example, Yu
and Guan [49] proposed a two-stage neural network approach,
where wavelet components, gray-level statistics, and shape fea-
tures were used to train a two-stage network. The first stage iden-
tifies potential MC pixels in the mammograms and the second
stage detects individual MC objects. Machine learning methods
have received the largest share of research in recent develop-
ments. Methods based on evolutionary genetic algorithms were
proposed by Jiang et al. [50] and Peng et al.. [51], where ge-
netic algorithms were used to search for optimal bright spots in
mammographic images that could be classified as MCs. A main
challenge in evolutionary methods is that numerical instability
could occur when no proper initialization is provided. Neural
networks have been investigated for MC detection [52]–[55].
However, the high nonlinearity associated with these methods
may result in trapping in local minima, and thus limiting their
discrimination power.

A more recent development in machine learning is a class of
learning algorithms known as support vector machines (SVMs).
Conceptually, an SVM utilizes an implicit nonlinear kernel map-

ping to a higher dimensional space, where an optimal hyperplane
classifier (which maximizes the separation margin between two
classes) is applied. SVMs were recently reported to achieve high
accuracy in MC detection in the literature [56]–[58]. El Naqa
et al. [56] demonstrated that the prediction power could be fur-
ther improved by applying a successive enhancement learning
(SEL) procedure, where SVM training is adjusted iteratively
by reincorporating misclassified samples. More recently, Wei et
al. [58] demonstrated that the computational efficiency could
be improved significantly while maintaining the best prediction
power using a Bayesian learning approach known as a relevance
vector machine (RVM). This is an important issue for real-time
processing of mammograms in a clinical setup.

Machine learning methods have been demonstrated to gen-
erate powerful classifiers. However, in many instances, there
could be a risk of overfitting the data if these methods were
not properly validated on independent datasets or tested using
statistical resampling methods.

In Fig. 1, we show an example of applying an SVM classi-
fier [56] to a mammographic image, where the MCs are high-
lighted in the SVM classifier’s output. In Fig. 2, we show the de-
tection performance, summarized using free-response receiver
operating characteristic (FROC) curves, achieved by different
representative methods in an evaluation study based on a clinical
mammographic database [56]; machine-learning-based meth-
ods seemed to have achieved the best performance.

B. Detection of Masses in Mammograms

A mass is defined as a space-occupying lesion seen in more
than one projection [60]. A mass is usually characterized by
its shape and margin (see Fig. 3) [4], [61]. Generally speaking,
a mass with a regular shape has a higher probability of being
benign, whereas a mass with an irregular shape has a higher
probability of being malignant. Most of the mass detection al-
gorithms are composed of two stages [4], [61]: 1) detection of
suspicious regions on the mammogram and 2) classification of
suspicious regions as mass or normal tissue. The algorithms for
the first stage in mass detection are generally pixel-based or
region-based [4], [61], [62].

In the pixel-based approaches, features are extracted for each
pixel and classified as suspicious or normal [4]. There have been
many published pixel-based approaches. Kegelmeyer et al. [63]
presented a pixel-based approach in which Laws’ texture fea-
tures and local oriented edge characteristics were extracted from
regions of interest (ROIs) and a binary decision tree classifier
was employed to classify spiculated lesions from normal tis-
sues. The authors reported 100% sensitivity with a specificity of
82% in experiments with 85 four-view clinical cases containing
36 cancer and 36 normal cases. Liu et al. [64] proposed a mul-
tiresolution scheme to detect spiculated lesions. The image was
decomposed into a multiresolution representation and four fea-
tures were extracted for every pixel at each resolution. In their
experiments, the authors selected 19 mammograms containing
spiculated lesions from the Mammographic Image Analysis So-
ciety (MIAS) database. The authors reported 84.2% true positive
detection at less than 1 false positive per image, and 100% true
positive detection at 2.2 false positives per image. Sampat and
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Fig. 1. (a) Mammographic ROI, where MCs are marked out by circles. (b)
SVM classifier output, in which the MCs are highlighted by the classifier.

Bovik [65] presented an approach to detect spiculated masses in
digitized mammograms. The approach consisted of two steps.
In the first step, a filter algorithm was used to enhance certain
features. In the second step, a radial spiculation filter was used
to detect the spatial location with the enhanced features. The
algorithm was tested with the Digital Database for Screening
Mammography (DDSM). The results showed that mass regions
on the mammograms could be correctly located by the proposed
algorithm. Campanini et al. [66] presented an SVM-based fea-
tureless approach for mass detection in digital mammograms.
Instead of extracting features from ROIs, the authors used a
multiresolution, overcomplete wavelet representation to codify
the image with redundancy of information. Two SVM classi-
fiers were used in this approach. The first SVM classifier was
used to find the mass candidates and the second SVM classifier
was used to reduce the number of false positives. Experiments
were conducted with 512 images containing 312 malignant tu-
mors and 200 normal images from the DDSM database. The
authors reported that the algorithm achieved nearly 80% true

Fig. 2. FROC comparison of different methods for the detection of MCs. The
methods include the following: 1) the image difference technique (IDTF) [37]
and the difference of Gaussians (DoGs) [59]; 2) multiscale decomposition by
wavelets [44]; and 3) machine learning methods using neural networks [49]
and SVM [56]. The best performance was obtained by the SVM with SEL
(SVM-SEL).

Fig. 3. Different shapes and margins of masses. (a) Mass shape with
oval well-circumscribed margins, having a high probability of being be-
nign. (b) Mass shape with irregular and spiculated margins, having a high
probability of being malignant. The images are from the DDSM database
(http://marathon.csee.usf.edu/Mammography/Database.html).

positive detection with a false positive rate of 1.1 marks per
image for mammograms containing malignant tumors. Kom et
al. [67] proposed a breast mass detection algorithm that first
used a linear transformation filter algorithm to enhance the
image; the enhanced image was subtracted from the original
image to obtain a difference image. A local adaptive threshold-
ing technique was developed to detect the mass in the differ-
ence image. In their experiment, a database of 61 mammograms
on which masses had been marked by expert radiologists was
used. The authors reported that the area under the ROC curve
(Az = 0.94 and Az = 0.938) corresponded to a sensitivity of
95.91% and 93.87%, respectively, when the preprocessing step
was or was not applied. Recently, Eltonsy et al. [68] proposed a
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multiple-concentric-layers-based algorithm to detect masses in
mammograms. The algorithm consisted of three steps. First, the
breast regions of screening mammograms were preprocessed by
segmentation and granulation techniques. Then, the suspicious
focal areas were detected using knowledge-based reasoning. Fi-
nally, two different criteria were applied to eliminate the false
positives. In their experiment, 270 CC views of mammographic
cases with biopsy-proven malignant masses from the DDSM
database were selected. One-half of the cases were used for
training and the other half were used for testing. The authors
reported that the test detection rates were 92%, 88%, and 81%
sensitivity at 5.4, 2.4, and 0.2 false positive marks per image,
respectively.

The second approach for mass detection is region-based [4].
In the region-based approach, ROIs are segmented, and then,
features are extracted from each region, which are subsequently
used to classify the regions as suspicious or not suspicious.
Many region-based approaches have been proposed. Chan et
al. [69] presented a region-based algorithm in which eight tex-
ture features were calculated from spatial gray-level dependence
(SGLD) matrices, and stepwise linear discrimination was used
to determine the importance of each feature in distinguishing
masses from normal tissue. In the experiment, one-half of a
dataset of 168 ROIs containing biopsy-proven masses and 504
ROIs containing normal breast tissue was used for training;
the other half was used for testing. The authors reported that the
area under the ROC curve was Az = 0.84 for the training set and
Az = 0.82 for the testing set. In the work of Sahiner et al. [70],
four gray-level difference statistics (GLDS) texture features and
three SGLD texture features were used for mass detection. A
convolution neural network was employed as the classifier to
distinguish between the mass and normal breast tissue. The
dataset for the experiment, consisting of 168 ROIs containing
biopsy-proven masses and 504 ROIs containing normal breast
tissue, was extracted from 168 mammograms. The authors re-
ported that the area under the ROC curve was Az = 0.87, which
corresponded to a true positive fraction of 90% at a false posi-
tive fraction of 31%. Mudigonda et al. [71] proposed a method
using both gradient-based and texture-based features to differen-
tiate benign masses from malignant tumors. The gradient-based
features were directional gradient strength and the coefficient
of variation of gradient strength that represented the sharpness
of mass boundaries. The 20 texture features that were based
on gray-level co-occurrence matrices (GCMs) represented the
texture information possessed by the mass regions. After com-
bining the gradient-based and texture-based features, a posterior
probability computed using the Mahalanobis distance was em-
ployed to classify breast masses as benign or malignant. The
area under the ROC curve of Az = 0.84 was reported with 38
MIAS cases, compared with Az = 0.6 with only gradient-based
features. A CAD system for mass detection in FFDM images
was developed by Wei et al. [24]. First, raw FFDM images were
enhanced using multiscale methods. Then, a two-stage segmen-
tation method, which combined gradient field information and
gray-level information, was used to detect suspicious masses on
FFDM images. In the third step, morphological and SGLD tex-
ture features were extracted for each suspicious mass. Stepwise

linear discriminant analysis (LDA) with Simplex optimization
was employed to select the most useful features. The trained
LDA classifier with the most useful feature set was employed to
differentiate masses from normal tissues. In their experiment, a
mass dataset containing 110 cases with 220 images and a no-
mass set containing 90 cases with 180 images were used. The
authors reported case-based sensitivity of 70%, 80%, and 90%
at 0.72, 1.08, and 1.82 false positive per image with the mass
dataset, and at 0.85, 1.31, and 2.14 false positives per image with
the no-mass dataset, respectively. Bellotti et al. [72] proposed a
completely automated CAD system for mass detection. The sys-
tem included the following three steps. First, an edge-based seg-
mentation algorithm was implemented to select the suspicious
regions. Then, eight gray-tone independent texture features of
the ROIs were derived from the GLCM at four angles θ = kπ/4
(k = 0, 1, 2, 3). Finally, a supervised two-layered feedforward
neural network, which was trained with the gradient-descent
learning rule, was employed to classify masses from normal
tissues. In their experiment, a database of 3369 mammographic
images, which included 2307 negative cases and 1062 positive
cases with at least one confirmed mass that had been diagnosed
by expert radiologists, was used. The authors reported that the
area under the ROC curve was Az = 0.783 ± 0.008 for the ROI-
based classification. For mammographic images diagnosed by
expert radiologists, 4.23 false positives per image were found at
80% sensitivity of mass detection.

More recently, an automated mass detection method was pre-
sented by Timp et al. [73] to detect temporal changes in mam-
mographic masses between two consecutive screening rounds.
Two kinds of temporal features, difference features and sim-
ilarity features, were designed to realize the interval change
analysis. An SVM was employed as a classifier to detect the
temporal changes in mammographic masses. The classification
performance was evaluated with and without the use of tempo-
ral features. In their experiment, the database consisted of 465
temporal mammogram pairs containing 238 benign and 227
malignant cases. The authors reported the area under the ROC
curve was Az = 0.74 without temporal features and 0.77 with
the use of temporal features.

A few other papers published on this topic [74]–[80] are
reviewed in the following. Different from feature-based CAD
schemes, the template matching scheme uses prior information
to segment possible masses from the background [75]. Tourassi
and Vargas-Voracek [76] proposed a template matching method
based on mutual information. The algorithm utilized the mutual
information to measure the similarity between a query mam-
mographic region and a template ROI stored in the knowledge
databank. In the work of Lai et al. [77], a tumor-like template
was first used in the template matching step. Then, the similar-
ity between a suspicious area and the template was measured to
detect masses in mammograms.

A support-vector-based fuzzy neural network classifier was
proposed by Moayedi et al. [78] for the classification of masses.
In the work of Tourassi et al. [79], by testing two differ-
ent datasets that were digitized using two different digitizers,
a knowledge-based CAD system was studied for mass de-
tection. The authors evaluated the system on the datasets by
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performing three experiments: evaluating the system on the
datasets independently, evaluating the system on each dataset
with the other being used as the knowledge database, and as-
sessing the system’s performance when the knowledge database
contained mixed cases. An automated breast mass detection sys-
tem using the Watson filter model was studied by Swatee et
al. [80]. The authors reported that the Watson filter model out-
performed the Laguerre–Gauss channelized Hotelling observer.

C. Detection of Architectural Distortion in Mammograms

Architectural distortion is defined in the Breast Imaging Re-
porting and Data System (BI-RADS) [81] as follows: “The nor-
mal architecture (of the breast) is distorted with no definite
mass visible. This includes spiculations radiating from a point
and focal retraction or distortion at the edge of the parenchyma.
Architectural distortion can also be an associated finding.” Ar-
chitectural distortion is the third most common mammographic
sign of nonpalpable breast cancer [22], [82], but due to its sub-
tlety and variable presentation, it is often missed during screen-
ing. Architectural distortion accounts for 12%–45% of breast
cancers overlooked or misinterpreted in screening mammogra-
phy [83], [84]. Broeders et al. [85] suggested that improvement
in the detection of architectural distortion could lead to an ef-
fective improvement in the prognosis of breast cancer patients.
Whereas many publications have been directed toward the de-
tection and analysis of calcifications and masses, relatively few
have been published on the detection of architectural distortion
in mammograms [22], [86].

Ayres and Rangayyan [87], [88] and Rangayyan and Ayres
[89] applied Gabor filters and phase portrait maps to characterize
oriented texture patterns in mammograms to detect architectural
distortion. The methods were tested with one set of 19 cases of
architectural distortion and 41 normal mammograms, and an-
other set of 37 cases with architectural distortion. The resulting
FROC curve gave the sensitivity rates of 84% at 4.5 false posi-
tives per image and 81% at 10 false positives per image for the
two sets of images [88].

Guo et al. [90] investigated the characterization of archi-
tectural distortion using the Hausdorff fractal dimension and an
SVM classifier to distinguish between ROIs exhibiting architec-
tural distortion and those with normal mammographic patterns.
A classification accuracy of 72.5% was obtained with a set of
40 ROIs, of which 19 had architectural distortion and 21 had
normal tissue patterns. Tourassi et al. [91] studied the use of
fractal dimension to differentiate between normal and architec-
tural distortion patterns in mammographic ROIs. The area Az

under the ROC curve achieved was 0.89, with a dataset of 1500
ROIs including 112 with architectural distortion and 1388 with
normal tissue patterns.

Matsubara et al. [92] used mathematical morphology to de-
tect architectural distortion around the skin line and a concentra-
tion index to detect architectural distortion within the mammary
gland; sensitivity rates of 94% with 2.3 false positives per image
and 84% with 2.4 false positives per image, respectively, were
obtained. Ichikawa et al. [93] developed an automatic method
to detect areas of architectural distortion with spiculations by
means of a concentration index of linear structures extracted us-

ing the mean curvature of the image; a sensitivity of 68% with
3.4 false positives per image was obtained.

Sampat et al. [94] proposed a technique for the enhancement
of spiculations, in which a linear filter is applied to the Radon
transform of the image. The enhanced image is filtered with
radial spiculation filters to detect spiculated masses and archi-
tectural distortion. A sensitivity of 80% at 14 false positives per
image was achieved with a set of 45 images with architectural
distortion; a sensitivity of 91% at 12 false positives per image
was obtained with a set of 45 images with spiculated masses.
Eltonsy et al. [95] developed a method to detect masses and
architectural distortion by locating points surrounded by con-
centric layers of image activity. A sensitivity of 91.3% with 9.1
false positives per image was obtained with a set of 80 images,
including 13 with masses, 38 with masses possessing archi-
tectural distortion, and 29 images with architectural distortion
only; a sensitivity of 93.1% was obtained in the detection of
architectural distortion at the same rate of false positives.

Prajna et al. [96] and Rangayyan et al. [97] extended the
method of Ayres and Rangayyan [88] described earlier for the
detection of architectural distortion in screening mammograms
obtained in the visit prior to that when breast cancer was detected
(known as “prior mammograms”). A method based on Gabor
filters and phase portrait analysis was used to detect initial can-
didates for sites of architectural distortion. An example with a
prior mammogram is illustrated in Fig. 4. The rectangle shows
the area of architectural distortion identified by a radiologist.
The node map obtained via phase portrait analysis has provided
a high response at the site of architectural distortion, along with
several other stronger and weaker responses. Fig. 4(c) shows the
ROIs obtained from the mammogram. A set of 386 ROIs was au-
tomatically obtained from 14 prior mammograms with 21 ROIs
related to architectural distortion. The fractal dimension of each
ROI was estimated using the circular average power spectrum
technique. FROC analysis with a set of four features, including
fractal dimension and three texture features known as entropy,
sum entropy, and inverse difference moment [98], provided a
sensitivity of 0.79 at 8.4 false positives per image in the detec-
tion of sites of architectural distortion in prior mammograms.
Due to its potential for the detection of early breast cancer at the
premass-formation stage, more recent works have been directed
toward the detection of architectural distortion [99]–[102].

D. Detection of Bilateral Asymmetry in Mammograms

Asymmetry between the left and right mammograms of a
given subject is an important sign used by radiologists to diag-
nose breast cancer [103]. The BI-RADS [81] definition of asym-
metry indicates the presence of a greater volume or density of
breast tissue without a distinct mass, or more prominent ducts,
in one breast as compared to the corresponding area in the other
breast. Analysis of asymmetry can provide clues about the early
signs of breast cancer, such as developing densities, parenchy-
mal distortion, and small asymmetric dense regions. Unlike for
the detection and analysis of calcifications and masses, there are
only a few publications on the detection of bilateral asymmetry
in mammograms [22], [104], [105].
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Fig. 4. (a) Example of a prior mammogram (image c52_95ro) acquired 24.2
months before the breast cancer was detected. The rectangle indicates the region
of architectural distortion identified by a radiologist. The image size is 1377 ×
850 pixels at 200 µm/pixel. (b) Node map. Each asterisk mark (∗) corresponds
to a peak position detected automatically in the node map. The numbers next to
the asterisk marks indicate the peaks in descending order of magnitude. (c) 25
ROIs obtained from the mammogram using the peaks detected in the node map.
The size of each ROI is 128 × 128 pixels (except at the edges of the image).

Scutt et al. [106] compared measures of bilateral breast asym-
metry among women in a study group that included 252 asymp-
tomatic women who had normal mammography but developed
breast cancer later, with those of 252 age-matched women in a
control group whose mammograms were normal and free of can-
cer during the study period. The breast volume was calculated
from CC mammograms, and the relationships between asym-
metry, established risk factors, and the presence or absence of
breast cancer were studied. With the age at menopause included
in the model for the subgroup of postmenopausal women, asym-
metry was found to be a significant predictor of breast cancer.

A few studies have been presented in the literature on digital
image processing techniques addressing bilateral asymmetry,
with most of them applying some type of alignment of the left
and right breast images before performing asymmetry analysis
[107]–[112]. Lau and Bischof [108] and Miller and Astley [110]
proposed procedures to compare the corresponding anatomical
regions between the left and right breast images in terms of
shape, texture, and density. Lau and Bischof [108] also proposed
a directional feature to quantify oriented patterns. However,
alignment procedures encounter problems, such as the natural
asymmetry of the breasts of a given subject, the lack of good
corresponding points between the left and right breast images to
perform matching, and distortions inherent to mammographic
imaging.

Miller and Astley [113] proposed a technique for the detection
of bilateral asymmetry that includes a semiautomated texture-
based procedure for the segmentation of the glandular tissue
and measures of shape and registration cost between views for
the detection of asymmetry. An accuracy of 86.7% was reported
with a test dataset of 30 screening mammogram pairs. In another
report, Miller and Astley [114] presented a method for the detec-
tion of bilateral asymmetry based on measures of shape, topol-
ogy, and distribution of brightness in the fibroglandular disk.
The method was tested on 104 mammogram pairs and a classi-
fication accuracy of 74% was obtained. Lau and Bischof [108]
devised a method for the detection of breast tumors, using a lo-

calized definition of asymmetry that encompassed measures of
brightness, roughness, and directionality. The method was eval-
uated using ten pairs of mammograms where asymmetry was a
significant factor in the radiologist’s diagnosis. A sensitivity of
92% was obtained with 4.9 false positives per mammogram.

Ferrari et al. [105] developed a method for the analysis of
asymmetry in mammograms using directional filtering with Ga-
bor wavelets. In their method, which was applied to MLO views,
the breast boundary is detected first and all artifacts outside the
breast are removed [115]. Then, the pectoral muscle is detected
and removed [116]. The fibroglandular disk is segmented [117]
and the resulting image is decomposed using a bank of Gabor
filters at 12 orientations and four scales. The Karhunen–Loève
transform is employed to select the principal components of
the filters’ responses. Rose diagrams are computed from the
phase images and subsequently analyzed to detect the presence
of asymmetry as characterized by variations in oriented textural
patterns. A database of 80 images containing 20 normal cases,
14 asymmetric cases, and six architectural distortion cases was
used to evaluate the algorithm. The authors reported classifi-
cation accuracy rates of up to 74.4%. The Gabor-filter-based
method gives quantitative measures of the differences in the di-
rectional distribution of the fibroglandular tissue (pattern asym-
metry). Rangayyan et al. [104] extended the method of Ferrari
et al. [105] by including morphological measures to quantify
differences in fibroglandular-tissue-covered areas in the left and
right breasts, which relate to size and shape; in addition, the
directional data were aligned with reference to the edge of the
pectoral muscle (in MLO views). Fig. 5 illustrates a pair of
mammograms of a subject with asymmetry and the resulting
rose diagrams [104]. A sensitivity of 82.6% and a specificity
of 86.4% were obtained in the detection of bilateral asymmetry
with a set of 88 mammograms.

E. Image Enhancement for Diagnosis of Breast Cancer

Image enhancement techniques have been proposed to im-
prove the quality and readability of mammograms or to detect
abnormalities because mammographic images generally have
poor contrast and visibility of details. The goal of image en-
hancement is to improve the image quality so that the processed
image is better than the original image for a specific application
or a set of objectives [119]. Enhancement methods can be clas-
sified into two types: direct and indirect contrast enhancements.

In direct contrast enhancement, a contrast measure is first de-
fined and enhancement is performed by directly manipulating
the contrast [120], [121]. A direct contrast enhancement tech-
nique for mammographic images was developed by Dhawan et
al. [122], in which a neighborhood consisting of a square region
of pixels centered on a given pixel, called the “center” of the
neighborhood, and a larger square annulus called the “surround”
were extracted around each pixel [122]. A local contrast for each
pixel using the average intensities of the center and the surround
regions was defined. The contrast value for each pixel was trans-
formed to a new enhanced contrast value using a specific contrast
enhancement function, and then, the obtained enhanced contrast
value was combined with the original image value to produce a
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Fig. 5. (a) and (b) Images mdb111 and mdb112 representing a case with
bilateral asymmetry [118]. The linear estimate of the pectoral muscle edge
detected using the Hough transform and the line perpendicular to the same
used in the alignment procedure are shown. (c) and (d) Rose diagrams of
the mammograms after alignment. Reproduced with permission from [104].
Copyright SPIE.

new pixel value of the enhanced image. Several related papers
have been published on direct-contrast-based image enhance-
ment, including region-based methods [123]–[125].

Recently, direct contrast enhancement has been further de-
veloped. Cheng and Xu [126] presented an adaptive fuzzy logic
contrast enhancement method for mammographic images. The
method was based on the maximum fuzzy entropy principle. It
transformed the image to a fuzzy domain, and then, a local mea-
sure of contrast, called fuzzy entropy in the fuzzy domain, was
computed. The contrast was enhanced using both global and lo-
cal information. Finally, the enhanced image was obtained using
defuzzification, by which the enhanced mammogram was trans-
formed back to the spatial domain from the fuzzy domain. The
work of Jiang et al. [127] developed further the fuzzy method by
Cheng and Xu [126], in which a combined approach with fuzzy
logic and structure tensor was proposed for the enhancement of
potential MCs in digital mammograms. In the proposed method,
a structure tensor operator was produced, and then applied to
each pixel of the mammographic image, which resulted in an
eigenimage. The eigenimage was combined with a fuzzy im-
age, which was obtained by a fuzzy transform from the original
image to enhance the contrast. This method can suppress non-
MC regions while enhancing the MC regions. Tang et al. [128]
presented a method for direct contrast enhancement, in which
a multiscale local contrast measure was defined in the wavelet
domain. The enhancement method was applied in the wavelet
domain by manipulating the contrast values computed using the

Fig. 6. Direct contrast enhancement of a part of a mammogram using a mul-
tiscale local contrast measure defined in the wavelet domain [128]. (a) Original
image. (b) Enhanced image.

high-frequency and low-frequency information. The advantages
of the proposed image enhancement technology lie in [128]: 1)
ease of adjustment by end users (for example, adjusting a sin-
gle parameter); 2) the image enhancement technology can be
applied to JPEG2000 compressed images in the decompression
stage to reduce the time required for image enhancement, which
modifies the wavelet coefficients obtained in the decompres-
sion stage; and 3) the proposed image enhancement technology
modifies a multiscale measure that matches the human visual
system, resulting in the enhanced images having a better visual
quality. Fig. 6 shows an example of image enhancement using
the method proposed by Tang et al. [128].

Different from direct contrast enhancement, an indirect con-
trast enhancement approach is not designed to manipulate the
image contrast directly. Indirect contrast enhancement methods
include unsharp masking, histogram equalization, and multi-
scale/wavelet enhancement. Among them, multiscale/wavelet
enhancement methods have been studied extensively. The ad-
vantages of multiscale/wavelet enhancement methods relate to
the observation that mammograms contain features with varying
scale characteristics [9]; subtle features, such as calcifications,
are mostly contained at small scales, whereas larger objects
with smooth borders, such as masses, are mostly contained in
coarse scales [129]. Thus, different features can be selected and
enhanced at different scales.

The first work using multiscale/wavelet enhancement for
mammographic image enhancement was that of Laine et al.
[130] in which the authors investigated mammographic im-
age enhancement by overcomplete multiscale representation.
An image needed to be enhanced was decomposed into a mul-
tiscale representation, and the coefficients in each subband of
the multiscale representation were modified using a nonlinear
mapping. Three multiscale representations were investigated,
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including the dyadic wavelet transform, the ϕ-transform, and
the hexagonal transform. The results suggested that wavelet-
based image processing algorithms could play an important role
in improving the performance of digital mammography [130].
The drawback of this method was that the parameters in the
nonlinear mapping at each scale were global, which was not
optimal [129]. Sakellaropoulos et al. [129] proposed improve-
ments to the method of Laine et al. [130]. The method of
Sakellaropoulos et al. [129] was based on a spatially adaptive
transform of the wavelet coefficients, aimed at overcoming the
drawbacks of the method of Laine et al. [130]. It included two
steps: the first step was to perform noise reduction and the sec-
ond step was to enhance the contrast of the mammographic
images. Experimental results using 22 images from DDSM
showed that the method offered significantly improved per-
formance over previously reported methods for global wavelet
contrast enhancement [129]. Both Laine et al. [130] and Sakel-
laropoulos et al. [129] used dyadic wavelet transforms, which
do not allow flexibility in the choice of discrete scales [131].
Heinlein et al. [131] proposed an algorithm for feature en-
hancement in mammograms using discrete wavelet decomposi-
tions called integrated wavelets. The integrated wavelet trans-
form allows more flexible and adaptive discretization of scales
than the dyadic wavelet transform, leading to better contrast
enhancement.

Noise and artifacts are generally introduced when images are
enhanced [129]. Thus, many image enhancement methods also
include steps to suppress noise and artifacts while enhancing
the features of mammographic images [131]–[133]. Kim et al..
[132] proposed an adaptive image enhancement method based
on the first derivative and local statistics. In this method, film
artifacts that could be misread as MCs were removed, and the
important features of the mammographic image were enhanced
by adding the adaptively weighted gradient images. Scharcanski
and Jung [133] presented a wavelet-based method to perform
noise reduction and image enhancement, which combined noise
equalization, wavelet shrinkage, and scale-space analysis. Dif-
ferent from other wavelet-based methods, this method only used
two detail images (horizontal and vertical) instead of three detail
images (horizontal, vertical, and diagonal). The wavelet shrink-
age step was mainly used to preserve edges that were persistent
over several scales and to remove residual noise. An adaptive
piecewise linear enhancement function was applied to the de-
noised wavelet coefficients [133]. In addition to the methods
mentioned earlier, several other image enhancement technolo-
gies for screening mammograms and cancer detection have been
published [134]–[139].

F. Content-Based Image Retrieval (CBIR) in Mammography

CBIR may potentially provide new and exciting opportunities
in the analysis and interpretation of mammographic images.
The underlying principle in CBIR is analogous to textual search
engines (e.g., Google), in which a search engine is used to
retrieve information that is relevant (or similar) to the user’s
query. Instead of textual description, however, in CBIR, the
query information is presented in the form of an image or its

extracted features. CBIR could serve as a diagnostic tool to
aid radiologists by comparing current cases with previously
diagnosed cases in a medical archive.

Among the early investigations on CBIR for mammography
was the work by Qi and Snyder [140], where simple metrics
based on shape, size, and brightness were used to characterize
images. The intent was to demonstrate the potential use of CBIR
in a picture archival and communication system (PACS). The
user would supply a query image and the system would respond
by finding images with similar characteristics from the archive
and returning them along with their corresponding ancillary
data. Despite its simplicity, this approach is one of the earli-
est attempts to move from textual description of complicated
radiological information into using features extracted from the
images themselves for representation. A similar approach was
investigated recently by Hassan et al., where a grid-based ap-
proach for indexing mammographic images for CBIR analysis
was applied [141].

Sklansky et al. developed a visual neural classifier approach
[142], in which a trained classifier is used to reduce the high-
dimensional data into a 2-D feature space. Images that are close
to each other in the 2-D space are selected for purposes of vi-
sualizing relationships in the data. Four radiologists evaluating
the system showed significant reduction in the number of be-
nign biopsies and misdiagnosed cancers. El Naqa et al. [143]
proposed a hierarchical learning approach, which consisted of
a cascade of a binary classifier and a regression module to
optimize retrieval effectiveness and efficiency. This approach
was based on using supervised machine learning algorithms to
model radiologists’ perception of similarity in their interpreta-
tion of clustered MCs. Methods based on neural networks and
SVMs were evaluated. A similar approach was further stud-
ied and validated using similarity data collected from expert
observer studies [144]. Zheng et al. [145] applied visual simi-
larity based on a k-nearest neighbor (KNN) algorithm to retrieve
mammograms with similar masses. A set of 14 features repre-
senting a wide range of morphological- and intensity-related
characteristics was selected to optimize the performance of the
KNN algorithm. This approach was further improved through
optimizing the reference library by identifying and removing
less effective ROIs [146].

Burnside et al. [147] investigated an inductive logic program-
ming (ILP) approach for CBIR. The idea is to use an ILP al-
gorithm to learn a set of hypotheses, which can discriminate
effectively between positive and negative examples. This ap-
proach makes use of a standardized descriptive lexicon of mam-
mographic abnormalities defined in BI-RADS. Information-
theoretic measures (such as mutual information) were used by
Tourassi et al. [148] for retrieval of masses in mammograms.
An unsupervised learning approach based on Kohonen self-
organizing map (SOM) was proposed by Kinoshita et al. [149].
The SOM was trained using visual features related to breast
density patterns. A set of 88 features was computed for each
mammogram, which include shape factors, texture, and mo-
ment features, as well as angular projections and morphological
features that were derived from segmented fibroglandular tis-
sues. Alto et al. [150] proposed a database indexing scheme for
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Fig. 7. CBIR framework with relevance feedback. The system consists of two
modes of operation: 1) learning the similarity metric and 2) retrieval of relevant
images. In the learning mode, feature vectors extracted from pairs of images are
presented to the learning machine along with the user’s similarity coefficient
for each image pair. In the retrieval mode, the learning machine predicts the
user’s similarity coefficient and uses this value to retrieve the most relevant
images from the database with a chosen threshold value T . The user’s feedback
is incorporated to improve the learning process.

Fig. 8. Example of a query with clustered MCs (left) and retrieved images
by a hierarchal two-stage SVM-based CBIR system in descending order of
similarity (from left to right). Numbers in brackets on top of each cluster are
user’s similarity scores.

retrieval of mammograms with masses based on their diagnostic
features related to shape, edge definition, and texture.

As reviewed before, most of the methods proposed for CBIR
attempt to mimic human visual similarity by extracting some
“relevant” imaging features and feeding them into a “learner.”
The methods differ in the type of features used and the similarity
metrics employed, which range from simplistic distance metrics
to more sophisticated machine learning algorithms (supervised
and unsupervised).

In Fig. 7, we show a functional diagram of a similarity-
learning-based approach for CBIR in mammography [143].
Image similarity is modeled by mapping the extracted image
features into experts’ responses using machine learning. This
similarity model can be further adapted online by incorporat-
ing the user’s feedback. A retrieval example using this model is
shown in Fig. 8 [143].

V. DISCUSSION

Future work on computer-aided breast cancer detection
should focus on improving the performance of CAD systems.
Although current CAD systems have not been fully success-

ful, we believe that further studies on CAD systems and related
techniques should help improve their performance, and thereby
enable them to gain more widespread adoption in breast care
clinics.

For MC detection, the last two decades have witnessed a
large number of MC detection algorithms developed for mam-
mograms. In recent years, several CAD systems that support
MC detection have been deployed for clinical use. However,
literature reports show mixed results on the role of current CAD
systems in practice, with some showing improvement [151]
and others showing no improvement [152]. Some of these
systems may tend to overemphasize the sensitivity in their
detection ability at the expense of specificity. This, in many
cases, may result in increased unnecessary biopsies when us-
ing such CAD systems. Nevertheless, we feel that the prob-
lem of MC detection should not be simply treated as look-
ing for “blobs” in an inhomogeneous image background; better
understanding of MC characteristics as perceived by experts
should be considered. In addition, different conditions of mam-
mographic characteristics associated with X-ray exposure and
breast tissue density should be studied across different insti-
tutions. Having more public datasets for evaluating the dif-
ferent detection techniques could help better understand the
current status of the field. Besides mammography, other imag-
ing modalities such as magnetic resonance imaging and 3-D
ultrasonography are currently being investigated in the litera-
ture. Information from these imaging modalities could be use-
ful for validating the ground truth used for current and new
methods.

Masses are more difficult to detect than MCs because the
features of a mass may be obscured by or be similar to those
of normal breast parenchyma. Thus, mass detection remains
to be a significant topic in breast cancer detection. Besides
mass detection, other important topics are the detection of ar-
chitectural distortion and the detection of bilateral asymmetry
in mammograms. Currently, both the detection of architectural
distortion and the detection of bilateral asymmetry in mam-
mograms are important research topics, and efficient solutions
to these two issues could improve the performance of CAD
systems.

As mentioned before, digital mammography has some po-
tential advantages over traditional screen-film mammography.
In recent years, there is a tendency for mammography to mi-
grate from screen film to direct digital acquisition because of
significant progress in digital mammography [153]. This de-
velopment is convenient for increasing the use of computers
to present, access, and process images; furthermore, the inte-
gration of CAD systems and PACS based on high-bandwidth
computer networks facilitates rapid electronic transfer of im-
ages between different sites [154]. The network-based PACS
makes it possible to transmit of digital images from one
place to another, which is convenient for healthcare experts
at different hospitals or industries, radiologists, and informat-
ics specialists to cooperate with one another. Networked CAD
systems and PACS could also address the problems associ-
ated with the lack of expert radiologists in remote or rural
areas.
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VI. CONCLUSION

CAD is an important tool for early detection of breast cancer.
A significant amount of work has been done in this area over
the past 20 years. Compared with double reading, CAD can
reduce the workload of radiologists. However, the performance
of current CAD systems still needs improvements to fully meet
the requirements for routine clinical applications.

In the move toward an effective CAD system for breast can-
cer detection, many techniques have been developed. This paper
provided an overview of the recent advances in CAD systems
and related techniques. We described some basic concepts re-
lated to breast cancer detection and diagnosis, and reviewed
many key CAD techniques for breast cancer: detection of cal-
cifications, masses, architectural distortion, and bilateral asym-
metry, as well as image enhancement and image retrieval.

Although significant progress has been made over the last
20 years, much work still needs to be done to develop more
effective CAD systems. Effective and efficient CAD systems
should lead to early detection of breast cancer and improved
prognosis for those affected by the disease.
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